
i r-

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

I ~ I I I

VLSI Memo No. 89-546 . E, P . " " ' 9"
o May 1989 S.P C i389

Fast Computation Using Faulty Hypercubes

Johan Hastad, Tom Leighton, and Mark Newman

Abstract

We consider the computational power of a hypercube containing a potentially large
number of randomly located faulty components. Wedescribe a randomized algorithm
which embeds an N-node hypercube in an N-node hypercube with faulty processors.
Provided that the processors of the N-node hypercube are faulty with probability p < 1, and
that the faults are independently distributed, we show that with high probability, the faulty
hypercube can emulate the fault-free hypercube with only constant slowdown. In other
words, an N-node hypercube with faults can simulate T steps of an N-node fault-free
hypercube in 0(T) steps. The embedding is easy to construct in polylogarithmic time using
only local control. Wralso describe 0(log N)-step routing algorithms which ensure the
delivery of messages with high probability even when a constant fraction of the nodes and
edges have failed. The routing results represent the first adaptive routing algorithms for
which an effective theoretical analysis has been achieved.

AL p p ro v e d i o ll P), c r1 ;, e t

0 89 9-01 025

" oAasac nise', Ca" b! dge Telephone
'Is' ! :.; . MaSSaCuse-tt (617j 253-8138

Ro 3' 2-321 cf 7ec'no'oa', 021j9

Acce,*SIor FO,

%71S_ CRAMl N
U1 iC I AU Li
Unantro .,. tA Ll

By

vAAwvfa,th1ty C- L es

Dist

Acknowledgements

To appear in the ACM Symposium on Theory of Computing, May 1989. This
research was supported in part by the Defense Advanced Research Projects
Agency under contract numbers N00014-80-C-0622 and N00014-87-K-0825, the
Air Force under contract number AFOSR-86-0078, and the Army under contract
number DAAL03-86-K-0171. Leighton was supported in part by a NSF
Presidential Young Investigator Award with matching funds from IBM
Corporation.

Author Information

Hastad, current address: Royal Institute of Technology, Stockholm, Sweden.
Leighton: Department of Mathematics and Laboratory for Computer Science,

Room NE43-332, MIT, Cambridge, MA 02139. (617) 253-5876.
Newman: Department of Matiematics and Laboratory for Computer Science,

Room NE43-334, MIT, Cambridge, MA 02139. (617) 253-5866

CopyrightO 1989 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy
is for private circulation only and may not be further copied or distributed, except
for government purposes, if the paper acknowledges U. S. Government sponsor-
ship. References to this work should be either to the published version, if any, or
in the form "private communication." For information about the ideas expressed
herein, contact the author directly. For information about this series, contact
Microsystems Research Center, Room 39-321, MIT, Cambridge, MA 02139;
(617) 253-8138.

Fast Computation Using Faulty Hypercubes
(extended abstract)

Johan Hastad Tom Leighton t Mark Newman t

Abstract terns is fault tolerance. In particular, it is crucial that
such a system be able to withstand an accumulation of

We consider the computational power of a hypercube faults among a reasonable number of its components.
containing a potentially large number of randomly lo- In this paper, we investigate the tolerance of the hy-
cated faulty components. We describe a randomized percube to randomly distributed faults Our results are
algorithm which embeds an N-node hypercube in an N- very encouraging and, in some areas, striking. For ex-
node hypercube with faulty processors. Provided that ample, provided that the processors of the N-node hy-
the processors of the N-node hypercube are faulty with percube are faulty with probability p < 1, and that
probability p < 1, and that the faults are independently the faults are independently distributed, we show that.
distributed, we show that with high probability, the with high probability, the faulty hypercube can simu-
faulty hypercube can emulate the fault-free hypercube late a fault-free N-node hypercube with only constant
with only constant slowdown. In other words, an N- slowdown. Of course, the constant factor slowdown de-
node hypercube with faults can simulate T steps of an pends on p (since it must always be at least 1), butN-node fault-free hypercube in O(T) steps. The embed- it does not depend on N. Moreover. the algorithm for

ding is easy to construct in polylcgarithn.:ic time using reconfiguring the faulty hypercube is simple. needs only
only local control. We also describe 0(log N)-step rout- local control and runs in only a polylogarithmic number
ing algorithms which ensure the delivery of messages of steps. Hence the faulty hypercube can quickly recon-
with high probability even when a constant fraction of figure itself to appear fault-free (except for the constant
the nodes and edges have failed. The routing results rep- slowdown) without the intervention of a central control.
resent the first adaptive routing algorithms for which an The reconfiguration algorithm for faulty hypercubeseffetiv theonretiatao aagoritimfoasaultyhycereubd.
effective theoretical analysis has been achieved, described in this paper represents a significant improve-

ment over previous work. In particular, although some
1 Introduction known reconfiguration algorithms preserve locality (i.e.,

neighbors in the virtual fault-free hypercube are sim-
The hypercube is emerging as one of the most effective ulated by nodes within constant distance of one an-
and popular network architectures for large scale paral- other in the faulty hypercube), the best previous sim-
lel computers. Already, hypercube-based machines con- ulation algorithms used off-line and nonconstructive
taining 216 processing elements have been manufactured reconfiguration strategies to obtain slowdowns of size
and sold commercially, and it is possible that in the e(v11oglog) (see [HLN]). The best previous on-line
not-too-distant future, hypercube-based machines con- algorithms result in slowdowns of size e(V/I-gT) (also
taining millions of processors will be available. A main in [HLN]). The main problem with these algorithms is
concern with the development of such large scale sys- that they require a nonconstant number of wires in the

virtual fault-free hypercube to be routed across a sin-• Royai Institute of" Technology, Stockholm SWEDEN.gewieothfutyyprb. eeaonat
?Math Dept. and Lab for Comp. Sci., MIT, Cambridge, MA. gle wire of the faulty hypercube. Hence, a constant

Supported by Air Force contract AFSOR-86-OO78, DARPA con- time simulation using these algorithms is not possible.
tract N00014-80-C-0622, Army contract DAALO3-86-K-01 71, and Otherwise, there has been relatively little previous work
an NSF Presidential Young Investigator Award with matching on reconfiguring faulty hypercubes that contain more
funds from IBM. than a few faults. The only exceptions (of which we are

I Math Dept. and Lab for Comp. Sci., MIT, Cambridge, MA.
Supported by DARPA contract N00014-SO-C-0622. aware) are the work of Becker ad Simon (BS]) and

Graham, Harary, Livingston and Stout ([GHLS]), who
consider fault-free subcubes of a hypercube containing
worst case faults. The constraint that the embedded
cube be a subcube (i.e. dilation 1) is very restrictive, as
is the assumption that faults are located in a worst case
fashion. Hence, the techniques and results of [BS] and
[GHLS are quite different from those presented here.
Dolev, Halpern, Simons and Strong ([DHSS]) also con-

sidered faults in a worst case model. Routes were chosen O(log N) steps with high probability.
from a predetermined set of paths. Their techniques and In the paper, we show how the Rabin result can
results also differ markedly from ours. achieved with a simpler algorithm and analysis. O

In the latter sections of the paper, we consider the analysis permits the routing to absorb up to O(N) edge
problem of packet routing on a hypercube with faults. faults as well as 0(r4Ig,) node faults. (A similar re-
Of course, once we have reconfigured a faulty hyper- suit with a more complicated algorithm and analysis
cube, we can simply use the classical algorithms to route has recently been discovered by Giladi ([G]).) We also
any permutation of N packets in 0(log N) steps. How- briefly sketch a way to potentially improve its tolerance
ever, the question of routing in a fault tolerant fash- to faults in as many as a constant fraction of compo-
ion directly on a faulty hypercube is still of some inter- nents by combining the decomposition scheme with our
est. For example, can we handle faults that are occur- adaptive algorithm for routing around faults.
ring dynamically without having to reconfigure all the Before describing our results further, it is useful to
time? Also, are there efficient routing algorithms that review some terminology. First, we describe the n-
are adaptive in the sense that packets can be routed lo- dimensional, N-node hypercube Hn, N = 2". The
cally around faults without knowing in advance where nodes of Hn are denoted by n-bit binary strings, and
the faulty components lie? Affirmative answers to these two nodes are linked by an edge if the associated strings
questions could well be of interest in practice and in the- differ in precisely one bit. If the differing bit is in the i&"
ory since all known 0(log N) step routing algorithms on position (I < i < n) then the associated edge is called a
a hypercube are inherently non-adaptive, dimension i edge. The neighbor of a node v across the

Motivated by such issues, we describe and analyze ith dimension will be denoted by v'. Similarly v"' 'k
a randomized packet routing algorithm that adaptively will denote the node reached from v by traversing di-
routes packets around faults as they are encountered mensions il, i2, .. ., i. For the rest of this paper we will
in an N-node hypercube that contains E(N) randomly use n and logN interchangeably.
located faulty nodes and G(N log N) randomly located An embedding of a virtual fault-free hypercube H,
faulty edges. We prove that the algorithm routes any into a faulty hypercube H, is a map 0 : H, - H0 that
permutation on the working processors in 0(log N) maps nodes of Hn to functioning nodes of H,, and edges
steps with high probability. Packets that start or end of Hn' to functioning paths of Hn. In this paper, a path
at faulty nodes are eventually determined to be unde- is said to be functioning if all the nodes and edges on t
liverable. All the deliverable packets arrive at their des- path are fault-free. (In some other papers ([HLN], (A]),
tinations provided that they are not located in the im- there are models which allow the nodes on the path to
mediate vicinity of a processor at the moment when it be faulty.) The dilation of an embedding is the length of
fails. The algorithm is fault-tolerant in the sense that the longest path O(e) in Hn corresponding to an edge in
no advance knowledge of the locations of the faults is H'. The load of an embedding is the maximum number
needed for the path selection, but it is not completely of nodes of H' mapped to a single node of H,. The
tolerant of nodes which fail while holding packets. The congestion of an embedding is the maximum number of
algorithm is of interest because during most steps. few paths O(e) that use a single edge of Hn. Expressed in
processors will fail and almost all deliverable packets these terms, our task is to find an embedding of Hn in
will be delivered. In addition, the algorithm itself is Hn with constant dilation, load and congestion. Once
quite simple and is the first adaptive routing algorithm this is done, then H, will be able to simulate H' with
for which an O(logN) bound on the routing time has constant slowdown.
been achieved. In this paper, we will consider a fault model where

There has been some previous work on packet rout- nodes and edges f -, fail independently with proba-
ing in faulty hypercubes. Most notably, Rabin ([R]) has bility p < 1. For a . K r the proofs, we will focus on the
devised an elegant scheme wherein each packet to be case where p < .1 . ,nly nodes fail. We later explain
routed is decomposed into e(log N) pieces. The pieces how to handle larger probabilities of failure and edge
are routed in a randomized nonadaptive fashion to their failures. The case where p < .1 is easier because each
destinations and then recombined to form the original node will then have a reasonably large neighborhood of
message. A key aspect of the scheme is that the packet functioning processors with high probability.
decomposition uses error-correcting codes. Therefore In reality, it is unlikely that so many processors will
only a constant fraction of the pieces of any packet need fail in a short period of time. However, our results are all
to get through to the destination for the packet to be re- upper bounds, and the case where only a small number
constructed. Such a scheme can be useful if the original of components fail is even easier. Also, if a hypercube-
packets represent relatively long bit streams In partic- based machine is inaccessible or vulnerable to catastro- t

ular, the original packets must have length fQ(log 2 N). phe then it may be possible that a large number of faultsA

Additionally, at most 0(j-.) edge faults can be ab- occur over time. This approach can also be applied in a

sorbed. Under these conditions, the Rabin algorithm hierarchical fashion if the faults are not independently
provides a fully fault-tolerant routing of N packets in located. For example, if entire subcubes are likely to

fail as a unit (e.g. an entire chip, board or box fails) The technical portion of the paper is divided into
but units fail independently, then the same results ap- three sections. In section 2, we present the constant
ply. Even if a few locally concentrated faults occur, delay embedding. Section 3 contains the O(log N) time
our results apply to the affected region. This analysis adaptive routing algorithm and in section 4 we show how
cannot apply to a worst case allocation of faults, since to improve Rabin's fault-tolerant results with a simpler
by selectively killing (N) nodes we can disconnect the algorithm.
hypercube into components of size 0(1v

Our proofs use a fair amount of probabilistic and corn- 2 Constant Delay Reconfigura-
binatorial analysis. Although no individual step in the
analysis is particularly difficult or noteworthy, there are tion
some approaches to these problems that may be of use
with other hypercube-related problems. In particular, To achieve a constant delay embedding, we need the
there is one simple observation that is used in various load, dilation and congestion to all be constant. The
forms throughout the paper. Although the observation embedding we will find will have a load and congestion
has probably been made by others, it is basic enough which depend strongly on the probability of failure -
that we think it worth highlighting as a paradigm for clearly the more nodes that fail, the mere nodes that
distributed match-making. have to be simulated by any one processor. However,

We will describe the result in its most basic form. the dilation will always remain five, and each processor
Consider a collection of E(N) men and O(N) women will be simulated by one of its neighbors, provided that
at a dance. Assume that each man has at least SI(X) p < 1 - ,yT5 (about .16).
female friends and that each woman has at most O(X) In order to simplify the analysis, each node (live or
male friends. By Hall's marriage theorem, it is pos- dead) finds a neighbor to simulate it. We first assign
sible to schedule 0(1) rounds of dances so that every nodes to live neighbors so that no node simulates more
man dances with at least one friend and every woman than a constant number of its neighbors. Then each pair
dances at most 0(l) times. Unfortunately, the problem of nodes simulating neighbors finds a live path between
of scheduling dance partners requires substantial global them of length five so that no more than a constant
coordination. For our purposes, we focus on a scenario number of these paths congest any edge. We will use
where pairing is accomplished simply by a man asking a two similar algorithms to accomplish these two tasks.
woman to dance. If many men ask a woman to dance at Let Ap and sp be constants (to be determined later)
once. she accepts as many as she can, making sure not to which depend only upon the probability p of failure.
exceed her capacity of C = 0(i) dances for the evening. Call a node unsaturated if it is live and if it has been as-
If she can only accept some of the men, she prefers signed to simulate fewer than Ap of its neighbors. Oth-
the tallest among them. Each man chooses a friend erwise, it is saturated.
randomly for each dance (without knowledge of which Throughout, we will assume some fixed ordered label-
women are tired or which women other men are asking) ing of the nodes. The most convenient one is the lexico-
until he dances. The result (which we call the Dance graphical order of the labels. The assignment algorithm
Hall Thtcrem - pun intended) is that if X = e(log N), proceeds in rounds. During a round, a previously un-
and there are fP(log N) dances, then with high probabil- saturated node might be picked by enough unassigned
ity (i.e. with probability exceeding 1 - 0('-) for some nodes so as to exceed its capacity Ap,. In such a case,
constant c > I) every man will dance during the course we require the node to accept enough of the simulation
of the evening. requests to saturate it. All accepted nodes should have

The Dance Hall Theorem scenario first arises in our lower labels than those which are rejected.
analysis when we attempt to embed the nodes of H" Algorithm 2.1 performs the first phase:
in the functioning nodes of H,. The nodes of H' cor-
respond to men and the functioning nodes of H,, cor- for i = 1 to spn
respond to women. If a man dances with a woman, for each unassigned node w
then the corresponding node of H, will be simulated w picks one of its neighbors uniformly
by the corresponding node of H. We need the Dance each unsaturated node v agrees to simulate as
Hall Theorem to ensure that the load of the embed- many nodes as it can without exceeding its cap-
ding is 0(1) (i.e. every woman dances with 0(1) men) acity, giving preference to lower labeled nodes
and to ensure that the embedding can be constructed all excess nodes remain unassigned
quickly with local control (no global matchmaker). We
also need some other as-yet-undescribed properties of

* the Dance Hall Theorem schedule to ensure that the di-
lation and congestion of the embedding are O(1), but Figure 1: Algorithm 2.1
these are more technical in nature and will be dealt with
in the main text. Since the algorithm never assigns a saturated node to

simulate another node, no node simulates more than Ap The following two lemmas show that with high prob-
nodes. Thus, a constant load embedding results. ability Algorithm 2.2 never dedicates saturated nod

To facilitate our proofs, we will first formulate a se- Thus with high probability Algorithms 2.1 and 2.2 b
quential algorithm similar to Algorithm 2.1. We will have identically. This proves that Algorithm 2.1 assigns
prove that this new algorithm assigns to each node a all nodes with high probability. Similar reasoning proves
neighboring node to simulate it. We will then show the Dance Hall Theorem described in the introduction.
that, except for a small proportion of executions, the Lemma 2.2. For p < .16, there exists an c. such that
algorithms behave the same. with high probability each node has at least epn live

In each round of Algorithm 2.2, unassigned nodes act neighbors.
sequentially. Each node chooses a neighbor to simulate
it only after all lower labeled nodes have chosen. We Proof. The probability that a node has fewer than en
would like to ensure that all nodes have a large number live neighbors equals
of choices that will result in a successful assignment. Let
ap, depend only upon the probability p. If some node Z, (-@~~P~w has fewer than apn unsaturated neighbors to choose i=O
from during its turn, we designate an arbitrary set of
saturated neighbors as dedicated to w during its turn. If Since the ratio of consecutive terms is always greater
w chooses a dedicated node during that particular turn, than , this sum is bounded by a constant times its
the dedicated node agrees to simulate w even though it last term. That term is
is saturated. We dedicate enough nodes so that w has (n) (1_ (1_)n n
at least apn neighbors which, if chosen, will agree to cn - n
simulate it.

The second term in the product can be made less than
N -'-' for some c by taking c small enough. The first

for i = 1 to spn term in the product can be made less than NI by taking
for unassigned nodes w in lexicographic order c small enough as well. The probability that some node

if w has fewer than apn unsaturated neighbors has too few neighbors is bounded by the sum of the
arbitrarily dedicate enough (saturated) probabilities for the individual nodes. This multipliel
neighbors the above bound by N. Thus for any c below both oW

w picks one of its neighbors uniformly these thresholds, the theorem applies. *
if the chosen node is unsaturated or dedicated

w is assigned to that node Lemma 2.3. Given a failure ratep, with high probabil-
else w remains unassigned ity a given node v never has fewer than apn unsaturated

neighbors available during Algorithm 2.2, for ap = I .
Proof. For v to have fewer than apn unsaturated

Figure 2: Algorithm 2.2 neighbors at some point during algorithm 2.2, at least
(ep - ap)n = apn of v's neighbors must have become
saturated during the course of the algorithm.

We will show below that with high probability no Each node always has at least apn neighbors (includ-
nodes are ever dedicated during Algorithm 2.2. In that ing dedicated nodes) to which it might be assigned dur-
case, the result is the same whether unassigned nodes ing any step. Further, if it is assigned, it is equally likely
choose sequentially or in parallel, provided preference to be assigned to any one of those neighbors. Thus no
goes to the lower labeled nodes. Thus we will show that node has a probability greater than 1 that it will be
Algorithms 2.1 and 2.2 produce the same output. assigned to any given neighbor, no matter what other

The following lemma proves that Algorithm 2.2 ter- assignments have been made previously.
minates quickly. There are no more than n2 nodes which might be as-
Lemma 2.1. With high probability all nodes have been signed to some node in v's neighborhood. The probabil-

assigned after spn steps of Algorithm 2.2, for sufficiently ity that at least pn of v's neighbors become saturated
large sp. is thus no more than

Proof. Because each node always has at least an (n 2 '()A,O,n < (. 2 .)Aan.
neighbors which will simulate it if chosen, the proba- (Apcpn) apn -Ap " "
bility that a given node is assigned during some step is To saturate apn of v's neighbors, there must be at least
at least ap, independent of what has occurred in pre- Apapn nodes at Hamming distance two from v each o
vious steps. Thus the probability that a node remains which is assigned to a neighbor of v. The first factor
unassigned after spn steps is no more than (1 - ap)',n . in the product represents the number of ways to choose
This quantity is less than I1r as long as sp > -" these nodes. Each one of these nodes has at most two

neighbors of v to which it might be assigned. Thus the congesting any edge too much. In the rest of this sec-
second factor upper-bounds the probability that each tion, we explore a way to choose paths in this manner.
of the Apapn nodes is actually assigned to a neighbor Take a node v simulated by its neighbor vb and con-0 of v. Although the probabilities of such selections are sider the set E,,b of edges ((vtbr, v)). There are 2n 2

technically dependent, the probability a given node is nodes w (all of the form w = vr' or w = v"b') which
assigned to a neighbor of v is at most -. , no matter (like v) might potentially use one of the edges in the set

what choices the other nodes made. as a second edge along a path. Any node which actually

For Ap large enough, this quantity is an inverse poly- does must be simulated by its neighbor across dimension

nomial in N. * b. The next lemma bounds the number of such nodes.

Lemma 2.3 implies that with high probability Algo- Lemma 2.5. For sufficiently large 6p and with high
rithms 2.1 and 2.2 behave identically. We know that probability, of the 2n 2 nodes at distance 0 or 2 from
Algorithm 2.2 successfully assigns each node to a neigh- either v or v , no more than 6,n of them are simulated
bor with high probability and that Algorithm 2.1 never by neighbors across dimension b.
assigns more than Ap nodes to any node. We conclude Proof. As noted before, each node has a probability
that Algorithm 2.1 achieves a constant load embedding no more than of borrowing across any given dinen-
with high probability, e an

Once we've assigned simulating nodes, we need to find sion, regardless of the choices made by other nodes. The

paths to simulate the edges in the hypercube. Say that probability that many nodes choose across the same di-

vb simulates v and vk b' simulates vk . Then to sim- mension is no more than

ulate the edge (v, vk), the nodes vb and v k s' choose /2(()6,2

a path between them of the form P(v, vk,b,b,r) = 2n1<) _

(v 6 , vi", vr, kv r k b vk). To avoid ambiguity, we will (6pn apn
refer to the choice of r as if it were made by v and v Of course, the actual probabilities depend on the par-
even though vb and vkb' actually choose. ticular 6pn-size subset we consider and on the relative

order in which the nodes of the subset successfully found
neighbors to simulate them. Then any node's probabili-
ties are conditioned upon other nodes' previous choices.

b r No matter how these choices are made, however, the
kr stated probabilities are upper bounds on the actual

r probabilities since when each node chooses it always has
kb' at least apn choices.

V For sufficiently large 6p, this is smaller than an inverse
polynomial in N. §

Each of the at most 6pn nodes (except for v and vb)
1 can use at most two edges in the set E ., as a second

k edge along some path. To use an edge as a second edge,
V such a node would have to be a neighbor of one of the

nodes incident to the edge. If w is of the form w =
Figure 3: A Choice of Live Path v"t , then w is adjacent to V and v and no other node

incident to an edge in E .b. Similar reasoning applies to
For two adjacent nodes v and vt, let S(v, vk, b, b) be nodes w which satisfy w = b . Tnr illy, each of v and

the set of dimensions r : k for which P(v, vk, b, b', r) v6 can use no more than n edges of E.,b as a second edge
is a live path. Because p < I - .3, there is a chance along some path. If we sum over all edges in E,.b the
(I - p) 4 = s > I that any given path P(v, vk , b, V, r) number of nodes which can use each edge as a second

is live. Note that the paths P(v, vk, ,b' , r) (r # k) edge counting according to multiplicity, the total will
are node-disjoint for a fixed choice of v, vk, b and . be no more than (26, + 2)n. Therefore no more than
Thus the probability that any one of them is live is Un of these edges will have more than p = 4(26,+2) of

47p
independent of the other paths. those 6pn nodes potentially using them as second edges.

Lemma 2.4. With high probability, for all quadruples Let S'(v, b) = {rI more than j'p nodes can send a path
through the edge (vbr , v)}. Then IS'(v, b)I I< Un.(V, Vk, b, bl), IS(V, Vk, b,b)J > 7pn for some constant 170. Let T(v, vk,b,bI) = S(V, V1,bb')-SI(Vb)-S*(V:, y).

Proof. Same as lemma 2.2, except that there are Then for each adjacent pair of nodes v and vk,
Nlog3 N different quadruples. U IT(v, vb,bf)I > Un. The sets T(v, v , b, b) will be cru-

With high probability, we know that all pairs of neigh- cial to our reasoning. The probability that a pair suc-
bors have many paths from which to choose. What re- cessfully choose a path between them is lower bounded
mains is for them to decide in a systematic but local by the probability that they successfully choose the path
fashion how to choose from among these paths without from T(r, t,v k, b, b').

Note that among the edges in all the paths repre- the dedication of a path containing a saturated edge in a
sented by the sets T(v, vk, b, b'), there are now only a fashion similar to the dedication of saturated neighbor
logarithmic number of quadruples (w, w0, c, c) which before. We dedicate paths to the pair (v, vk) whenev
might potentially congest any given edge. We've al- there are not 63pn choices for a simulating path.
ready limited the number of paths for which the edge is
the second edge along the path. If the edge is the first
edge along the path, then one of the edge's endpoints for i = 1 to s'n
is the simulating node. Each endpoint simulates only for all unassigned pairs (v, vk) in order
a constant number of nodes, and each simulated node if IU(v, vk, b, b')l < Opn
contributes exactly n paths. If the edge is the third edge dedicate enough r E T(v, vk , b, b')
along the path, then the path is simulating an edge at (v, vk) pick a path between them uniformly
Hamming distance one from the edge considered. There if the chosen path is unsaturated or dedicated
are exactly n edges of this type. The cases in which the (v, vk) is assigned to the path
edge is the fourth or fifth edge along the path are identi- else (v, vk) remains unassigned
cal to the first two cases. Thus each edge can be poten-
tially congested by no more than /pn = (4Ap+2yp+1)n
paths. Figure 5: Algorithm 2.4

We can now describe Algorithm 2.3, which assigns
paths to simulate edges. During Algorithm 2.3, each
edge will decide whether or not to accept some path Lemma 2.6. For a suitably large choice of the constant
routed through it. Because the other edges in the s',, with high probability all pairs of nodes searching for
path simultaneously decide whether or not to accept an assignment to a path have been assigned one after
the path, it is possible that some might accept it while s'n steps of Algorithm 2.4.
others reject it. If this happens, we assume that an Proof. Each pair is successfully assigned with proba-
accepting edge counts the path as contributing to its bility at least Op during any step. The rest of the proof
load anyway. Call an edge saturated if it has accepted is identical to that of lemma 2.1. N
exactly Bp paths routed through it. Otherwise, call it We now show that with high probability Algorithm
unsaturated. Order the pairs (v, vk) lexicographically. 2.4 never adds dedicated paths with saturated edge&
As before, in any round an edge accepts the lowest or- to any U(v, vk, b, bV). Thus with high probability Al I
dered pairs which try to route through it until it reaches gorithms 2.3 and 2.4 behave identically. This proves
its capacity. that Algorithm 2.3 assigns all necessary paths with high

probability.
for i = 1 to sp n We will need the following general bound on the sums

for each unassigned adjacent pair of nodes (v, vk) of random variables from (S].

(v, vk) pick a path between them uniformly Lemma 2.7. Let {Y} be independent random vari-
each unsaturated edge agrees to as many ables with Pr[Y = 1] = Ot and Pr[Y = 0] = 1 -
paths routed through as it can without Set Y = ' Yt and € = . Then
exceeding its capacity, giving preference
to lower labeled pairs Pr[y > 0 + a) < e- a 2/ + a 3l

/2#

all excess pairs remain unassigned
Lemma 2.8. With high probability no set
U(v, vk, b, b) ever has cardinality less than Opn at the
beginning of some step of Algorithm 2.4, given #p = 2.Figure 4: Algorithm 2.34
Proof. There are at mostupn pairs which have a non-

Parallelling what we did before, we will present Al- zero probability of congesting a given edge on some
gorithm 2.4, a sequential version of Algorithm 2.3. We path represented by an r E T(v, vk, b, b). Thus at most
will show that this modified algorithm terminates hay- 5,upn 2 pairs have non-zero probability of congesting any
ing assigned paths between every pair of nodes simulat- of those edges, counting according to multiplicity. For a
ing neighbors, with high probability. Maintaining the path to leave U(v, vk, b, b') one of its edges must become
parallel with what we proved earlier in this section, we saturated. For (" - Op)n = Opn paths to become un-
will then show that the two algorithms perform indis- available, Bp(3n pairs must choose a path crossing an
tinguishably, with high probability. At any time when edge on some path represented by an r E T(v, vk, b, b).
the pair (v, vk) attempt to choose a path between them The probability that a pair chooses any particular
during Algorithm 2.4. let U(v. v , b, b') be the subset of path is at most I,3J no matter what other choices are
T(v, vk, b.bY) consisting of dimensions r for which all of made. Thus if there are paths that a particu-

the edges along P(v, vk , b,b, r) are unsaturated. Define lar pair (w, u) might choose which contain an edge

on some path in T(v, vk, b, b'), then the probability 3 Fast Routing Around Faults
that (w, wi) chooses such a path is at most -- , and

wws, qw,, 5- 5ppn "
2.In this section we examine the problem of routing a per-

Then, by lemma 2.7, the probability that more than mutation on a faulty hypercube. We describe a variantOpn paths become unavailable is therefore no more than of Valiant-Brebner routing on the hypercube that we
call offset routing. In order to present our ideas more

easily, we first review some basic ideas from Valiant and
eZp(_OP (B . 5AP n +)2 5 Brebner's results.

-p O (Bpp - "P The butterfly is obtained from the hypercube byreplacing each node v of the cube by a cycle
which, for large enough Bp, is smaller than an inverse (vo,V, ,vn,vO). We replace each edge (v,v') by a
polynomial in N. pair of edges (vi - 1,v') and (v _.,iv). We can visualize

With high probability O(n) steps are sufficient to se- the set of nodes {viv E H,,} as sharing a level of the
lect all paths. Since we have guaranteed that the paths butterfly. We call edges of the form (vi- 1 , vi) straight
have constant congestion, this proves the following the- edges and those of the form (vi1, v:) cross edges. All
orem. edges connect nodes in adjacent levels or level n to level

0.
Theorem 2.9. For each p < 1 - V (about .16) there We view our hypercube routing as if it took place on
is an O(log N) step algorithm such that if each of the the butterfly. A packet starts at some node v0 and ends
nodes of an N-node hypercube fails with probability p at some node w,. We think of the column of nodes
then with high probability the algorithm finds an em- {vi} as shared by the hypercube node v, which assigns
bedded fully functioning N-node cube with constant each node in the column a different queue from a set
load, dilation and congestion. The paths which sim- of n queues. If a message traverses the straight edge
ulate the edges of the cube only use live nodes. (vi-1, vi) in some butterfly step, then it is passed from

the node v's (i - 1)" queue to its &?h queue in the hy-
Edge faults are easily handled once node faults are percube step. If the message traverses the cross edge

understood. Say each edge fails with probability Pe, (vi- 1, v) in some butterfly step, then it is passed from
each node fails with probability p, and the failure of v's (i - I)t queue to vi's it queue in the hypercube
any component is independent of the failure of other step. In the remainder of the paper, we will view the
components. Then the results of this section follow with routing algorithms as if they take place on the butterfly,
little change. Specifically, as long as p. + Pe - PnPe < although the proofs we give will bound performance on
1 - /75 (about .13), the algorithms of those sections the hypercube as well.
work with high probability. The only addition to our Routing from vo to Wn is simplified by the fact that
reasoning is that when one node tries to communicate there is a unique path of length n between those two
with a neighbor node, it is unsuccessful not only if the nodes. The ith step in the path connects a node at
neighbor is faulty but also if the link between them has level i - I with one at level i. If v and w agree in the
failed. th bit, the edge is a straight edge. If they differ, a

Another extension of this approach is to the case of cross edge is used. For example, to route from the node
arbitrarily large constant probabilities of failure. By (1, 1, O)0 to the node (0,1,1)3 we would use the path
showing that most local areas ot the cube retain a good (1, 1, 0) 0 , (0, 1, O), (0, 1,0)2, (0, 1, 1)3.
structure even when each node fails with probability In the first phase of the Valiant-Brebner routing al-
very close to 1, we can prove that constant delay simu- gorithm, each node in level 0 first sends its packet to
lations are always possible. a random node in the nth level using the unique path

Theorem 2.10. Say each node of an N-node hyper- of length n. From there the packet is passed across the
cube fais independently and with constant probability straight edge to the level 0 node and then, in the second
p < 1. Then with high probability, the faulty hyper- phase, it is routed along the unique path to its true des-
cube can simulate a completely functioning N-node hy- tination. In [VB] it was shown that this algorithm takespcube w0hol osan lwon (n) stepa to complete and uses total queue length 0(n)
percube with only constant slowdown. O) oa blit

at every hypercube node, with high probability.
In the preceding discussion, we ignored several de- In the offset routing algorithm, each packet remains

tails of implementation. For example, we assumed that fairly close to where the Valiant-Brebrer scheme would
faulty nodes could participate in the algorithm to search send it. Its location always differs from where their al-
for nodes to simulate them. In reality, other nodes must gorithmn would send it by some offset which is a random
participate for the faulty nodes. Also, much informa- dimension. Its ability to move easily among the offset
tion must be exchanged by the various participants in nodes will be enhanced by the addition of "jump" edges
the algorithm. It can be shown how to implement this between the nodes on a given butterfly level. These
algorithm using polylogarithmic time per step. ideas will be made more concrete in what follows.

A jump edge is an edge of the type (v,, vi). Jump bility pi = h that it will hit one of the edges. The sum,
edges are not butterfly e,' -s. A packet traversing such over all messages, of the probabilities of hitting one 10k
an edge would be sent f ne hypercube) from the j" the edges is E, 21 " = hi = h. From lemma 2.
queue of v across the edge (v, vi) and deposited in the the probability that more than h + or messages route
jh queue of v'. Note that all n jump edges of the type through the edges is less than ezp(-(1 -)
(vj, v) (j varying) are actually manifestations of a sin- If h > n, then the probability that more than (k +
gle hypercube edge from v to vs. This means that every 1)h messages pas through the edges is less than N- 4.
hypercube edge is represented n + 2 times in the but- Similarly, if h < n, the chance of having more than
terfly with jump edges: as n different jump edges and 2 (k+l)n messages crossing the set is also less than N- '.
cross edges.

Call the path traversed by a packet in the Valiant-
Brebner scheme its virtual path. In the offset routing al- Lemma 3.2. Take an arbitrary set of O(n3) edges in

gorithm, a packet whose virtual path would go through the butterfly, i > 2. Then with high probability the

the node vk. -1 will pass instead through some node vi Valiant-Brebner routing scheme routes only O(n 3) mes-

If its virtual path would leave v-_1 via a straight edge, sages through edges in the set, counting according to

then the offset path will traverse three edges of the type multiplicity.
(v 1- 1, v -1, v Vv4.). It finds such a path by randomly Proof. Examine each level separately. With high prob-
choosing a dimension j $ i and attempting to route ability if level I has el edges from the set, then no
across the appropriate three edges. If the packet en- more than O(e + n) messages will traverse an edge
counters a fault in any of the edges or nodes along those from the set at that level. Summing over all lev-
three edges, it returns to the node vi-, which chooses els, we get that with high probability the number of

another random dimension and tries again. Note that messages crossing edges from the set is no more than
this means that a packet might have to traverse many O(E ei + n 2) = O(n3). a
more than three edges to pass from one level to the Consider a hypercube with faulty nodes, the butterfly
next. If the virtual path would leave vk._1 via a cross derived from the cube and a particular node v_ -.i in the
edge, then the offset path traverses three edges of the butterfly. We will need to know that such a node has
type (vk_ , 1, v'- 1 , v

Ik , tkk) instead. Note that no mat- ample opportunity to send a packet to the next level.
ter whether straight edges or cross edges are used in the Consider a path P _.,,= (vi_1 , v , i, v , kk) W l
virtual path, the node ends with a random offset j from assume that a menage has successfully arrived at v_
its virtual location. and so there are six components - three nodes and three

To begin, the message generated by node v repeat- edges - in the path that must all work properly If the
edly chooses random dimension j and attempts to route I t

across the edge (vo, v) until it successfully finds an ini- p1
tial offset. Say that the message reaches the n"t level are independent, then each such path has probability

for the second time with offset i (i.e. it reaches the node less than 2 that it has a faulty component. For sub-

u,). Then to conclude, the message finds an offset j for sequent analysis, we would like it to be the case that
which the path , is fault-free. for all pairs k-1,i there are at least (pn dimensions j

We will prove that the total length of every offset path which lead the message on a functioning path Ps,,_,ij.

is O(n) and that every packet traverses its offset path We would also like to know that at least (p n of the paths

in O(n) steps, with high probability. First we show that P,,,, = (-1-., 1 ,4.) are fault-free for all pairs

few messages ever cross any given small set of edges. v_ 1 , i. We also need room to begin and end the routing.
That is, we need that 4,n of the paths Qo.i = (vo, v)

Lemma 3.1. Take an arbitrary set of h edges on one and (n of the path = -, E, , V,) contain
level of the butterfiy. Then with high probability the no faults. If so many paths are available to all nodes we

Valiant-Brebner routing scheme routes only O(h + n) say the butterfly is localli reouiable.

messages through edges in the set. sytebtefyi oal otbe
messagote thrg e messe c tt s. mLemma 3.3. If the probability that any component
Proof. Note that each message can congest at most fails is less than 1 - / and all failures occur indepen-

one edge in the set. The following andysis applies to

the first phase of the routing algorithm. The analysis dently, then with high probability the butterfiy is locally

for the second phase is almost identical. routable.

Say the edges share level I of the butterfly. Then we Proof. The set of paths available at any time are node-
can partition the butterfly's first I levels into 2 nonin- disjoint. Thus the faultiness of any path is independent
tersecting butterflies B1, B 2 ,.... B& each built from a of other paths in the set. The proof is therefore similar

subcube with 21 nodes. For a message to route through to that of lemma 2.2. a

one of the h edges, it must start in the same butterfly Lemma 3.4. Say a butterfly has faulty components

as the edge. Say that hi of the edges lie in butterfly Bi. but is locally routable. With high probability each mes-
Then each nessage starting in butterfly B, has proba- sage in the offset routing traverses a path of length O(n).

Proof. We will prove that any given message's path is Lemma 3.6. Let T be the set of butterfly edges such
of length O(n) with high probability. Since there are that any packet whose virtual path crosses an edge in
only N messages, this will imply the lemma. Assume T has a non-zero probability of congesting some edge
that at some point in its route, the packet is at the in E as a jump edge in its offset path. Then with high
node 0., where v is the node it would traverse in the probability, there are 0(n 3) packets whose virtual paths
Valiant-Brebner scheme. Assume as well that the packet traverse any of the edges in T, again counting according
is scheduled to traverse dimension k. (If the straight to multiplicity.
edge is to be used or if the packet is at the beginning or
end of the route, the analysis is identical.) Then if the Proof. Say (wk, w) is a jump edge traversed by a
packet successfully chooses to jump across dimension packet. Let Pt,.,. or P, be the path used by the
j, the path (v' 1 v V, t4k must have no faults. packet when it traverses the jump edge. Then (w, w')
Since the butterfly is locally routable, (pn of the possible is either the first or the last edge traversed in the path.
paths to choose are fault-free. If a faulty path is chosen, If it is the first, then w k = t4, wk = Vt2 and therefore

no more than six steps are necessary to encounter the I = j. The edge traversed in the virtual path would

fault and to return tov 1 . Since a random dimension is have been (vk,vk+l) or (vk,vk+1) for some k. There
chosen at each step, the probability that a packet takes are n choices for v such that vk = Wk and n choices
more than 6a(2n +2) steps is less than the probability of for k. Thus there are only 0(n 2) elements of T whose
at least (a - 1)(2n + 2) heads in a sequence of a(2n + 2) traversal in some packet's virtual path gives the packet
tosses of a coin with probability (p of landing tails. This a non-zero probability of traversing the edge (w, w') as
probability is less than a jump edge. The same reasoning holds for use of the

jump edge as a third edge. Again, since JE = O(n),
a(2n + 2)\ (a-1)(2n+2) ITI = O(n'). By lemma 3.2, only 0(n 3) packets traverse

2n+2 (edges in T, with high probability. I
(ea(2n + 2) 2n+2 Lemmas 3.5 and 3.6 also hold for the set of edges in-

< (a2-nn -2Y (1C-)(0-1
)(2

n+2) cident to the set of nodes {vk} for some hypercube node
2n + 2 v. If we bound the number of packets congesting these

< (ea(l - (,)a-1)2n+2 edges then we bound the number of packets ever resid-
ing in queues in the node v (the queuesize of v). The

an inversc, polynomial in N for large enough a. * following two technical lemmas help bound how much
Now that we know each message moves a distance congestion actually results from the possible sources.

of O(n) during an offset routing phase, we need to
show that its forward movement is delayed by at most Lemma 3.7. Consider a set of nonnegative integers
O(n) other packets. These facts together will bound the {a,,1 < r < z, 1 < s < o'(r)) where o'(r) > (pn for all
packet's time to its destination. We will show that few r, E,, Q,, < cn 3 and a,, < n for all pairs r. s. If exactly
other packets choose virtual paths in such a way that one index s, is chosen uniformly in [I, '(r)] for each
they have a non-zero probability of selecting an offset index r then with high probability , a,o.,, = 0(n 2).
path which congests a given node's path. We will then Proof. Let X,. = a,,,. We wish to bound the value of
show that even fewer of those actually congest the path X = F, X,. To do so, we bound the moment gener-
when they use offset paths. Note that a hypercube edge ating function M(A) = E(e x). We can then bound
traversed by a given message may be traversed by other Pr[X > bn2] = Pr[eAX > e 6"3] < e-bn2 E(eX).
messages as either cross edges or jump edges. We con- This bound directly follows from Markov's inequal-
sider these two cases separately. ity. We will first bound the moment generating func-

Lemma 3.5. ConsiderasetEofO(n) hypercube edges tions M,(\) = E(eAxx) = - 1 -\&,-. We can
and butterfly straight edges. Let S be the set of butter- then use the fact that, since the X, are independent,
fiy edges such that any packet whose virtual path crosses M(A) = I M, (A).
an edge in S has a non-zero probability of congesting an If we could find a,, < or,, and a positive integer 6
edge in E as a butterfly edge in its offset path. Then such that 0 < Orr - 6, a,1 + 6 < n then by transfer-
with high probability, there are O(n3) packets whose ing 6 units this way we could only increase M,(A) (for
virtual paths traverse any of the edges in S, counting a positive A). This follows because e '- - eA*,,-6 =
packet several times if it traverses several edges in S. eA(a-)(eA - 1) < eA'o.(ell - 1) = ex (O,-+1) -ex&,,,

Proof. If (wi_.1 , wl) is a butterfly edge traversed by a By this reasoning, if A, = aFor is iixed, we maximize
packet's offset path then the packet's virtual path must M,(A) by setting all terms except possibly one equal to
use an edge of the form (w ', ,'j 1) for some pair i,j. either 0 or n. Thus. There are only n2 such pairs. The same reasoning would
hold if the edge in question were a straight edge. Since
JEl = O(n), ISI = O(n 3). By lemma 3.2, only 0(n 3) E(ex.) < 771-,(e" + o(r) - 1) if A, <n
packets traverse edges in S, with high probability. U &-I - eIn + o(r) - f - if .4, > n

For the rest of the proof we fix A - . If A, < n This can only increase the amount of congestion placed
then M,.() <. + a(r) - I) 1 (1 + I + on any edge, since it increases the number of attempts
'(r) - 1) < 1 + A (The second inequality uses the made by each packet. However, once m, does choose R

special path, we always place it in the last node of th'
fact that for 0 < 7 1, e" < 1 + 27y.) If A, > n then first fault-free path it found. Thus i, winds up in theM,(.1)< 5 , Me + f(r))< 1+

- a -(7 n((e",, -) 21 < same place on the next level as if no special requirements
In either case the bound is at most I + 2eA1 < had been made.

ezp(2-). Thus M(1) 5 I,. ezp(S- -) < N2,. Con- Consider the choice of offsets made by the message
tinuing the reasoning of the first parag-dph of the proof, m,. at even level 4.. Let qr be the number of choicesin] Nh rea g e cta m th pof pairs of offset dimensions (i,j) for the message M.
Pr[X > Wn2] < e - " . We can make this probabil- which would congest an edge in m0 's path. Then T q, =
ity an arbitrarily large negative power of N by letting b 0(ns) by lemmas 3.5 and 3.6. (r, q, is a second way
be a large constant. 0 to count the number of edges in S and T according to

Lemma 3.8. Consider a set of nonnegative integers multiplicity.)
{, 11 < r < z} where _. 0, = 0(n2) and 0,. = 0(n) The choice of the dimension i was actually made for
for all r. Let {g,} be a set of random variables with in, at level 1, - 1. The choice was made randomly and
geometric distributions g ,,- G(Cp) (i.e. 9, = a with uniformly from the set of offsets which led to a fault-
probability (p(1 - (p) -) Then with high probability, free path to level Ir. The exact selection of offsets i are
Z, g,- , = 0(n). dependent from packet to packet and, for a particular

Proof. Order the integers by increasing size /1 < /3 < packet, from one level to the next. However, no matter
/3. Then since how we condition on previous events, there are always

enough offsets to choose from at any given moment.

3kn+2, kn+ 2 3(+I)-I Also, the bounds on the probabilities of congesting p0
will hold regardless of previous events. Let ii < i2 <

are all at least as large as 3k,,, we know that ... < i a,, (r) > (pn, be the choices of offsets at level
- /3J _ = 0(n). We assume that /, = 0(n), so ,. - 1 which lead to a fault-free path to level 1,. Let a,,

the sum 8, + .L = Ot,, = 0(n). -qual the number of offsets j such that if m, is routed
Now with high probability, all sums En 9kn+r are from level 17- 1 to level I using offset i, and then to le

0(n). We know that 1, + 1 using offset j then congestion results in m0 's pat
Then since F, C,, = q,. F",, Q,, = 0(n 3). Since the

S <total number of offsets j is n, clearly o,-, < n. Let i,, be
-: D 9kn+)/3+1v1 the offset for m actually chosen at level 1 - 1. Lemma

7 7=1 3.7 implies that with high probability 1 :,, = 0(n 2)
Thus, with high probability, Z, g,./,. = O(n). I Set 3, = a,,,. At level 1,, whether the message in,

Theorem 3.9. If we route using offset routing and the chooses a path from the set of (pn special paths or the
hypercube is locally ro'itable, then with high probabil- set of (1 - (p)n nonspecial paths, it has at most 3,.

ity, all packets are delivered in 0(log N) steps and all choices which congest m0 's path. Thus whether we con-
nodes have total queuesize 0(log N). dition whether the choice was special or nonspecial, the

probability that message m, will congest o's path is
Proof. Focus on the path Pa of a particular message bounded by A-
ma. We will show that the congestion along pa from (pn f
various sources is (n) with high probability.The number of routing attempts made by m, is

Lemmas 3.5 and 3.6 bound the number of messages gw - G((). On each attempt, the probability that is
which have the potential to congest an edge of ma's will congest rn's path is at most -n Eachattempt is
path while passing between levels on their own paths. an independent trial and the sum of the probabilities of
Enumerate the packets MIM 2, M .. ,m2 which have a congestion in the trials is at most - Zg-,63,, which is
non-zero probability of congesting pa while traversing an 0(n) by lemma 3.8. By lemma 2.7, with high probabil-
edge from an even level to an odd level in their virtual ity 0(n) attempts actually did congest ma's path. Since
paths. A particular packet may appear several times in each attempt involves at most six edges, each attempt
the enumeration - once for each even level node along can add at most six to the congestion on ma's path.
its virtual path from which it might congest an edge of Thus with high probability, the total congestion on the
pa. path from routing attempts at even levels is 0(n).

The packet n, has at least (pn paths which would Next examine the congestion on Pa from other pack-
successfully route it to the next level. Arbitrarily des- ets beginning and ending their paths. For a packet tc
ignate exactly (pn of these paths as special. For the congest an edge as the first jump edge of its path, it ha~s
purposes of our analysis, we require m, to choose a spe- to be generated by one of the edge's endpoints. Thus
cial path before we allow it to route to the next level, there are at most 0(n) such packets. Now consider

wmmm~mmm n n
a

i
i l

H~i i II I

those packets congesting p0 during the ending of their Our improvement of Rabin's results sterns from a
paths. Each of the three jump edges used to finish off a more uniform and efficient selection of paths for the. path has an endpoint which is at distance one from the routing of pieces. Th, n pieces are first sent sent to
virtual destination. Thus at most 0(n) packets exist the neighbors of the node which generated the packet.
which have the potential to congest any given edge as These pieces are then routed along parallel paths to the
the first, second or third of these jump edges. Therefore neighbors of a random intermediate node. From there
a total of 0(n 2) packets have a non-zero probability of the pieces are routed along parallel paths to the neigh-
congesting some edge of pa as they finish their routes. bors of the intended destination, and from there to the
An argument along the lines of the one bounding con- destination itself.
gestion at even levels shows that congestion from these If v and w are two hypercube nodes, let ri(v, w) be
sources is 0(n) as well. the path from v' to w ' used in one phase of the Valiant-

The same argument bounds congestion from routing Brebner scheme. Let 11(v, w) = {z,(v, w)JI < i < n}
attempts at odd levels, and also bounds congestion on be the set of all possible such paths. We will first show
edges incident to any fixed node. M that if each node v chooses a node v' uniformly and

then routes a different piece along each of the n paths
in ll(v, v') that only 0(n) pieces reside in any node's

4 Fault Tolerant Routing queue at any time step.

Lemma 4.1. Consider the collection of all paths in the
The offset routing algorithm cannot tolerate faults N sets 1(v, v') (varying over v), where each hypercube
which occur during a particular routing phase. If a node v has chosen a node v' randomly and uniformly.
packet resides in a node as it fails, that packet is ir- For any node u and any integer 0 < j :_ n, with high
retrievably lost. Rabin ((R]) discovered how to use the probability u is the jth node along only 0(n) paths in
technique of information dispersal to route even in the the collection.

presence of failing nodes, provided each fault occurs
with probability no more than 0(-). Proof. If u is the jth node along the path iri(v, w) then

In this section we will present a simpler variation of U' = w 1tW ... W t, ... vn. Separate the two cases in
Rabin's algorithm. We also show how our algorithm which either i < j or i > j. If i < j, then it must be
handles faults occurring with probability 0(1). First, that vj+1 ... vn = u,+l ... u,. Precisely 2i nodes satisfy
we will briefly sketch the main ideas of the original rout- this condition for v. If one of these nodes chooses a w
ing algorithm. Each packet is dispersed into n pieces such that wi ... wi-lu.i wi+l ... w, = u I... uj for some
sent along node-disjoint paths to different locations and i < j, then u will be the jh node along exactly one
then along node-disjoint paths to the final destination, path iri(v, w). Otherwise, u will be the j" node along

Since every piece needs to carry 0(n) bits of routing none of the paths 7rw(v, w), i < j. Thus for each of the
information, the original packets must necessarily be 2i nodes, the probability of exactly one such.path is
large. For concreteness we will assume that all packets and the probability of no such paths is I - !.
contain m = fQ(n 2) bits. Any piece created will contain If i > j, then v,+l ... v.. 1 vi+ 1 ... v, = u+l ... un
0(2) bits. We also assume that all links and nodes have for some i > j. Precisely (n - j)22 nodes satisfy this
the capacity to hold a constant number of the original condition. All reasoning is the same as in the previous
packets (and therefore 0(n) pieces). case, except now w must be chosen so that w, . . . wj =

Rabin proves that with high probability, the number ul ... uj.. Thus the probability that u is the jt" node
of pieces crossing any node or link never exceeds its ca- along exactly one such path is 7. The probability that
pacity. This guarantees that each piece can move during no path r(v, w), i > j crosses u in this fashion is 1 -
every step and that the entire routing will take no more We now need only consider the sum of 2i 0-1 random
than 2(n + 1) steps, n + I steps for each piece to arrive variables each with probability I. of equalling I and
at its random intermediate location and another n + 1 (n - j)2' 0-1 random variables each with probability
to arrive at its fina' destination. No piece's progress is * of equalling 1. Call this sum X. Then the moment
ever delayed by a full queue in the node ahead. generating function M(A) for X satisfies

As Rabin points out, rout.. 'ith dispersal of infor- -. , (-j)23

mation can tolerate faults W: t%, -ispersal into pieces is M(A)_ (=.-el + 1 - + - ---)
done with more redundant - _,e pieces may actually --e'
be constructed in such a vay tha; the arrival of half 2) (n -2
(oz some other constant fracti,, ., them is enough to (I + (e" -)\ I + (eA I)\()
reconstruct the original ri:agf. Rabin shows how to 2i /

S do this through matrix multiplication. He then proves
that if each link has probability -r of failure, then with < e('-)e(e -) = e 1 1)

probability I - 2N()f all messages will be safely re- Thus Pr[X > an] < en"(%)e -nA - (ee-.-i)n.

constructed at their destinations. Setting A " Ina, this implies Pr[X > an] <

(ea(l -In0-1) n , a bound which can be made as small routing, then with high probability the routing will be
as desired by increasing the constant a. M successfully completed. That is, a given packet will ar

The Vih piece created from v's packet is sent to vi , rive at its destination iff both its origin and destinatiolW
along the path iri(v, w) to w i and then to w. By lemma do not a1/.
4.1, at no time do more than an pieces cross a given
hypercube node, with high probability. Since the pack- Proof. Whether or not the ith component fails gives

ets traversing any link all come from one of the link's rise to a 0-1 random variable whose moment generating

endpoints, no more than 2an pieces cross the link dur- function is Mi(A) = (-Le + (1 - -)). Thus the mo-

ing any step of the routing. If all links and nodes have ment genenating function for the sum of these random

the capacity to hold 2a original packets, then with high variables is

probability no buffering is necessary and no piece waits (2n+3)n

in a queue. M(A) < 1 + _ < e(-'+5
This analysis assumes that each node routes its packet cn)

to a random destination. If we use two phases as in the
Valiant-Brebner scheme, the results extend to arbitrary Thus we can bound the probability that more than of
permutation routings. the components fail by eZp(C(e - 2n+3) A n)y Setting

n - L, we see that the probability of so many failures
Theorem 4.2. If all packets are divided into n pieces 16' j ,
which are routed along parallel paths in both phases of is no more than (e (,)*)n . This bound can be made

the routing algorithm, then for an arbitrary permuta- as low as desired by increasing the constant c. M

tion, with high probability the two-phase routing takes An increase in the probability of failure by a con-

2(n + 1) steps. No piece waits at any time. stant factor can be tolerated by increasing the size of
the pieces.

If we encode the original packet in the pieces via Note that offset routing and information dispersal are
Rabin's matrix multiplication, then we can bound the complementary techniques. By combining this simpli-
probability that v's packet is lost by the probability that fied variant of information dispersal with offset routing,
some 2 of its pieces run into faulty components. But if still better results are possible, at least in the theoretic
that many pieces are lost, then at least M are lost during setting. The combined routing algorithm tolerates the

one of the two phases of the routing algorithm. Assume failure of a constant fraction of the hypercube's compo-
they are lost in the first phase; the reasoning for phase 2 nents during the course of the routing of a single permu-W
is identical. There are at most (2n 4 3)n different corn- tation. To send a packet, the node first disperses pieces
ponents (nodes or links) encountered by pieces from v to a well defined set of n nodes at distance 3 (instead of
during the first phase. We need the following bound neighbors). The packets are then routed along parallel
on the number of intersections between the routes of offset paths to the symmetric set of n nodes close to
different pieces. the destination. Finally, the pieces are combined at the

Lemma 4.3. For any hypercube node u 96 v, w, no destination. If each node or link fails independently of

more than two paths in Hl(v, w) cross u. other components and if in the case it fails it does so at
a random time during the routing then this combined

Proof. Count the nodes along the path iri(v, w) algorithm tolerates failure rates of a constant fraction
starting with vi as the 0 th node. Say that the k h of the hypercube's components.
node along 7ri(v, w) is the same as the s'h node along
rwj(v,w) for i < j. Then wi 1 ... w i+i... -1lW2 • . kl k.1 • . n --

0 where = v. iff q q' and 5 Open Questions
similarly for w9'.

There are four cases. If k, I < j then v = v, a The hypercube is the first network with small node de-
i gree which is known to be reconfigurable (with high

contradiction. Similarly, if k, I > i then U1 is a probability) with only constant slowdown when a con-
contradiction. If k < il > j or if 1< ik > j then it stant fraction of its nodes and edges fail. It remainsmust be true that w, - t3 , wj --- and wh -- Vh for i < satfato fisndsadegsfi.I ean
h <bj. Thus all us'(v, w) with a < h < j are precluded open whether any constant degree network shares thisfrom crossing u (otherwise wi < h<, a contradiction). property. In particular, it would be of interest to deter-
Tror hreeng patherise = ano al crio. mine if similar results hold for the butterfly.Therefore three paths cannot all cross u. @

Since no component's failure will affect more than two
pieces, it must be true that at least of the (2n + 3)n 6
components have failed. Acknowledgements
Theorem 4.4. Given a sufficiently large constant c, if We would like to thank Bill Aiello and Satish Rao for
each component of the hypercube fails independently their many helpful comments, and particularly for their
with probability -L before or during some permutation help in proving lemma 3.7.

7 References

[A] F. Annexetein, "Fault Tolerance of Hypercube-
Derivative Networks," to appear, Proc. I" Ann. ACM
Symp. on Parallel Alga. and Arch, June, 1989.
(BS] B. Becker and H.U. Simon, "How Robust is the
n-Cube?," Proc. 27" Ann. IEEE Symp. Foundations
Comput. Sci., Oct. 1986, pp. 283 - 291.
[DHSSI D. Dolev, J. Halpern, B. Simons, and R. Strong
"A New Look at Fault Tolerant Network Routing" Proc.

16 th Ann. ACM Symp. on Theory of Computing, Apr.
1984, pp. 526-535.
[G] E. Giladi, private communication.
[GHLS] N. Graham, F. Harary, M. Livingston, Q. Stout
"Subcube Fault-Tolerance in Hypercubes," unpublished
manuscript.
[HLN] J. Hastad, F.T. Leighton and M. Newman, "Re-
configuring a Hypercube in the Presence of Faults,"
Proc. 19th Ann. ACM Symp. on the Theory of Com-
puting, May 1987, pp. 274 - 284.
[R] M. 0. Rabin, "Efficient Dispersal of Information For
Security, Load Balancing and Fault Tolerance," JACM,
to appear.
[S] J. Spencer, Ten Lectures on the Probabilistic
Method, SIAM, Philadelphia, 1987.
[VB] L. G. Valiant and G. J. Brebner, "Universal
Schemes For Parallel Computation," Proc 13'h Ann.
ACM Symp. on the Theory of Computing, May 1981,.pp. 263 - 277.

